Spectral Smoothing via Random Matrix Perturbations
نویسندگان
چکیده
We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for the maximum eigenvalue function using the Gaussian Orthogonal Ensemble (GOE). Smoothing the maximum eigenvalue function is important for applications in semidefinite optimization and online learning. As a direct consequence of our GOE smoothing results, we obtain an O((N logN) √ T ) expected regret bound for the online variance minimization problem using an algorithm that performs only a single maximum eigenvector computation per time step. Here T is the number of rounds and N is the matrix dimension. Our algorithm and its analysis also extend to the more general online PCA problem where the learner has to output a rank k subspace. The algorithm just requires computing k maximum eigenvectors per step and enjoys an O(k(N logN) √ T ) expected regret bound.
منابع مشابه
On the Spectral Properties of Matrices Associated with Trend Filters
This note is concerned with the spectral properties of matrices associated with linear smoothers. We derive analytical results on the eigenvalues and eigenvectors of smoothing matrices by interpreting the latter as perturbations of matrices belonging to algebras with known spectral properties, such as the Circulant and the generalised Tau. These results are used to characterise the properties o...
متن کاملAutomatic Estimation of Multivariate Spectra via Smoothing Splines
The classical method for estimating the spectral density of a multivariate time series is to first calculate the periodogram, and then smooth it to obtain a consistent estimator. Typically, to ensure the estimate is positive definite, all the elements of the periodogram are smoothed the same way. There are, however, many situations for which different components of the spectral matrix have diff...
متن کاملPerturbations of Jordan matrices
We consider perturbations of a large Jordan matrix, either random and small in norm or of small rank. In both cases we show that most of the eigenvalues of the perturbed matrix are very close to a circle with centre at the origin. In the case of random perturbations we obtain an estimate of the number of eigenvalues that are well inside the circle in a certain asymptotic regime. In the case of ...
متن کاملOnline Linear Optimization via Smoothing
We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish ...
متن کاملSpectral correlations of individual quantum graphs.
We investigate the spectral properties of chaotic quantum graphs. We demonstrate that the energy-average over the spectrum of individual graphs can be traded for the functional average over a supersymmetric nonlinear -model action. This proves that spectral correlations of individual quantum graphs behave according to the predictions of Wigner-Dyson random matrix theory. We explore the stabilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1507.03032 شماره
صفحات -
تاریخ انتشار 2015